
Preventing WebRTC IP Address Leaks

Guillaume Nibert1,2[0000−0002−3277−8533], Sébastien
Tixeuil2,3[0000−0002−0948−7172], Baptiste Polvé1, Nana J. Bakalafoua M’boussi1,

and Xuan Son Nguyen1

1 Snowpack, F-91400 Orsay, France
{guillaume.nibert, baptiste.polve, nana.bakalafoua,

xuanson.nguyen}@snowpack.eu
2 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
3 Institut Universitaire de France, F-75005 Paris, France

sebastien.tixeuil@lip6.fr

Abstract. The WebRTC API enables real-time communication of text,
video, and audio media streams through a web browser without requir-
ing third-party extensions. However, it was not designed with privacy in
mind. We conduct an experiment to analyse privacy leaks associated with
WebRTC on Linux, macOS and Windows. Our findings show that de-
spite recent updates to its specification and implementations, sensitive
public IP addresses can still leak during audio/video communication,
particularly in large non-NAT corporate networks, even when using a
VPN, SOCKS or HTTP/S proxy. To address the observed leaks, we de-
velop a simple, easily maintainable, cross-platform, open-source solution
that confines the Mozilla Firefox web browser in a docker container. Our
tests show that our containerised solution is effective in all situations
even with a compromised browser without restricting applications.

Keywords: WebRTC · IP address leaks · docker · confinement · web
browser · privacy · virtual private networks.

1 Introduction

Texting, calling and video chatting across the globe has become an essential
part of our daily lives. In particular, the WebRTC API popularised real-time
communication via web browsers. We show that this API may reveal sensitive
information about users without their knowledge. We focus on IP address leakage
when using WebRTC-based communication apps on desktop browsers. Leaking
public IP addresses can allow DoS attacks, geolocation, ISP and network type
(mobile or not) identification. Leaking private IP addresses can reveal infor-
mation about the local network, including the ISP, whether the agent is on a
corporate or home network, and which services are hosted. These addresses can
also be used in other attacks, such as recreating cookies [15]. These data are
therefore highly sensitive and valuable to attackers.

In this context, our contribution is fourfold:
This version of the contribution has been accepted for publication, after peer review but is not
the Version of Record and does not reflect post-acceptance improvements, or any corrections. The
Version of Record is available online at: http://dx.doi.org/10.1007/978-3-031-89350-6_22. Use
of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use https:
//www.springernature.com/gp/open-research/policies/accepted-manuscript-terms.
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1. To understand when and where IP address leaks occur while using WebRTC
technology, we conduct a thorough evaluation on Ubuntu, macOS and Windows.
We implement a test bed that contains all necessary elements to enable WebRTC
usage. Our first step is to evaluate the main web browsers behaviour. Our findings
show that IP address leaks happen in all cases, regardless of the browser.
2. To further understand IP address leaks, we add the ability to use a VPN,
HTTP/S or SOCKS proxy to our test bed for privacy purposes. These servers
supposedly provide anonymity for the WebRTC-based user application by mask-
ing their IP address. Using Mozilla Firefox as a benchmark, we confirm that even
with a VPN, IP address leaks can still appear, publicly identifying the user.
3. To protect against IP addresses leakage while using WebRTC technology,
we propose a simple user-friendly solution using Docker-based containerisation.
This solution was added to our test bed by enabling the ability to use a con-
tainerised version of Mozilla Firefox for evaluation purposes. Additionally, we
study the resilience of our containerisation proposal against an adversary able
to compromise the user’s web browser. Our findings show that the combination
of containerisation and a VPN is effective in protecting against IP address leaks,
even in the case of a compromised browser. This solution is easily maintainable
with Docker, thanks to a shared base in Dockerfiles and Compose files across all
systems.
4. To evaluate the performance of our Mozilla Firefox containerised solution
with respect to its native version, we run open-source browser benchmarks on
Ubuntu Linux, macOS, Windows, and show the overhead is limited.

Our test bed, which includes a Firefox script, a Docker containerisation so-
lution, and all data related to our reported results, is available under the GNU
General Public License version 3 (GPLv3)4 at: https:// gi thub.com/snowpac
kvipn/ preventing-webrtc-ip-address-leaks.

The rest of this paper is organised as followed: Section 2 presents WebRTC
and its associated privacy problems. Section 3 reviews previous approaches to
the IP address leak problem, and the current privacy related countermeasures
provided in the state-of-the-art WebRTC API. Section 4 describes in detail our
findings, proposal and evaluation. Section 5 compares the performance of the
native and containerised Firefox browser. Finally, Section 6 provides concluding
remarks and suggests research avenues for future work.

2 WebRTC IP address leaks

Suppose Alice and Bob want to use the WebRTC API for VoIP peer-to-peer
communication. Alice is the initiator of the connection (figure 1). Steps 1-2, using
the ICE (Interactive Connectivity Establishment) [13] framework, she contacts
a STUN (Session Traversal Utilities for NAT) server via her web browser, which
returns her public IP address(es). Step 3, she provides a list of ICE candidates
containing her public and private IP address(es) in the form of SDP (Session
4 The GNU General Public License v3.0: https://www.gnu.org/licenses/gpl-3.0.html

[accessed on 17 September 2024].
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Fig. 1. Establishing real-time Peer-to-Peer
media communication behind NATs

Fig. 2. test bed elements

Description Protocol) objects via a signalling server, which in turn forwards this
list to Bob. Steps 4-5-6, Bob performs the same steps as Alice. Step 7, they
establish their connection, then exchange their media stream peer-to-peer. If
both participants are unable to use the same transport protocol (TCP/UDP),
the media stream transport between Alice and Bob is impossible. A TURN
server (Traversal Using Relays around NAT) solves this problem by acting as
TCP stream/UDP datagram translator proxy.

So, addresses collected by the ICE protocol from the WebRTC communica-
tion initiator include public IPv4/IPv6 addresses returned by the STUN server,
public IPv4/IPv6 addresses allocated by a TURN server, and both public and/or
private IPv4/IPv6 addresses attached to physical and virtual interfaces.

WebRTC IP leaks are induced by its specification. STUN/TURN servers
only know the source public IP addresses from the received requests. Yet, addi-
tional information can be retrieved by configuring a wildcard DNS record for this
server [25]. Irrespective of VPN, one cannot block a STUN/TURN request from
the web browser, as this request is made outside the signalling framework [6].

WebRTC leak issue. all or part of the IP addresses’ list may be sent to the
signalling server, and then to the peer [29]. So, an adversary may deploy their
own STUN, TURN, and signalling servers, as well as a malicious web page with
JavaScript code calling the WebRTC API (locally run on the client’s computer),
to gather all addresses of a victim, and send them to their signalling server.

3 Related Work

In 2015, Roesler [25] demonstrates private and public IP address leaks using
the WebRTC API. Roesler’s JavaScript code contacts a STUN server to get
the public IP address of the machine, with private addresses extracted from the
SDP offers. As mentioned earlier, it is also possible to encode other informa-
tion using a wildcard DNS entry associated with a STUN server. For exam-
ple, if we want to disclose an IP, URIs of the STUN server could be: stun:IP-
address.stunserver.com[:port].
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Takasu et al. [27] show a JavaScript code collecting the user’s private IP
addresses and potentially public IP addresses associated with system’s local
interfaces.

Englehardt and Narayan [4] explain that collected IP addresses can be those
of all local network interfaces. If some of the IP addresses match those provided
by the ISP, using a VPN would leak the VPN public address and the ISP provided
addresses into the sent SDP offer to the peer. Their study focuses on private
IP addresses leaks behind a NAT for tracking purposes. Liu et al. [16] and
Revyakina [23] focus on private IP addresses leaks only. Hosoi et al. [11] develop a
network scanner using the WebRTC API to extract private and public addresses
from an SDP object. They suggest disabling WebRTC or JavaScript, a solution
we do not find acceptable as we want to use WebRTC.

Al-Fannah [2] carries out an in-depth study by developing a website using the
WebRTC API to recover sensitive IP addresses. The paper demonstrates more
protective VPNs and suggests different countermeasures to improve the user’s
privacy, such as disabling WebRTC, disabling IPv6, using ad-dons, and/or using
a more protective browser (Safari). In addition, this study highlights leaks linked
to incorrect VPN configurations, particularly when IPv6 is activated in addition
to IPv4. Other research has looked into these problems [20,14,1,21]. Ramesh
et al. [21] create a tool called VPNalyzer which, among other things, identifies
VPNs that leak IPv6 addresses. This line of works show that a VPN shall be
chosen with care, as these leaks are unrelated to WebRTC.

Coming back to the problems directly related to WebRTC, Reiter and
Marsalek [22] present an extensive analysis on WebRTC privacy and security
risks. They present code to retrieve private and public IP addresses from local
interfaces and a STUN server if the machine is behind a NAT. Public and local
IP data can be used by port scanners (e.g. jslanscanner5) to find other services
associated with these IPs, geolocate the victim, carry out fingerprinting or inter-
protocol attacks. Their recommended solution requires updating the WebRTC
specification, which is a long process.

Hazhirpasand and Ghafari [10] determine information about the victims’
local network by finding the status of network node ports using round-trip delay
time heuristics. They build an extension for both Google Chrome and Mozilla
Firefox to analyse requests made on the user’s network. If these requests target
local network nodes with numerous connections, the user is notified. To avoid a
complete leak, they suggest disabling WebRTC or limiting it.

Fakis et al. [6] propose a detector for calls to the WebRTC API in a web
page. This detector comes as a browser extension or a gateway. The detector
analyses the presence of calls to the WebRTC API in a web page, blocks such
calls, notifies the user, and restores the WebRTC objects depending on the user’s
decision. This blocks STUN requests transmission and identifies malicious sites
that hide JavaScript calls to the WebRTC API to discover sensitive IP addresses.

5 Heyes, G.: Jslanscanner. (Aug 2007). https://code.google.com/archive/p/jslansca
nner/ [accessed on 14 June 2024]

https://code.google.com/archive/p/jslanscanner/
https://code.google.com/archive/p/jslanscanner/
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WebRTC privacy-friendly specifications. The latest WebRTC RFC 8828 [29]
(Jan. 2021) addresses privacy concerns and proposes four ways to manage IP
addresses collection in WebRTC. Mode 1 collects all the machine’s interface ad-
dresses, and those issued by TURN and STUN servers. Mode 2 gathers IP ad-
dresses attached to the default route interface, and those provided by STUN and
TURN servers contacted from the same interface. Mode 3 accumulates addresses
provided by STUN and TURN servers only from the default route, without dis-
closing local interface IP addresses. Mode 4 forces the proxy use on the default
route6. In this way media traffic must pass through the proxy. If the proxy does
not support UDP, TCP is used to transport the media stream.

By default (if no user consent is given), mode 2 is used. Otherwise, mode 1
is used. User consent is managed by the API’s getUserMedia7 method, which is
used to obtain authorisation to access peripherals such as the microphone and
camera. In other words, authorising access to the microphone and/or camera
means agreeing to be in mode 1. On one hand, if a user is hidden behind a
VPN and has not given its consent (which leads to mode 2), the signalling
server can only retrieve the VPN’s virtual interface addresses (VPN private
IPv4/IPv6 addresses) and those returned by the STUN/TURN servers (VPN
public IPv4/IPv6 addresses). The STUN/TURN servers only know the VPN’s
public address(es). On the other hand, the user can only exchange text media
streams, not carry out audio/video conferences since the WebRTC API does not
have authorisation to access the microphone/camera (mode 2).

The IETF draft by Fablet et al. [5] proposes a new scheme against local IP
address leakage by replacing them with multicast mDNS addresses. The comple-
mentary draft by Uberti et al. [30] adds two operating modes to the WebRTC IP
Address Handling Requirements, identical to mode 2 but using mDNS addresses.
Mode 2.1 replaces the IPv4 address associated with the default route local in-
terface, and all IPv6 addresses are associated with the same interface by mDNS
addresses unless they are privacy-preserving addresses [19]. Mode 2.2 replaces
all IPv4 and IPv6 addresses associated with the default route local interface by
mDNS addresses.

Current Implementations. The main desktop browsers [26], namely Chrome,
Safari, Edge, Firefox, Opera and Brave8 implement all or part of the aforemen-
tioned WebRTC specifications. WebRTC is disabled in the Tor Browser [24].

Users can force a mode regardless of the authorisations granted through
getUserMedia. This is easily done with Brave Browser and Opera (from the
settings), less so on Firefox (from the hidden settings about:config), Chrome and

6 Note that if several default routes are available, the interface chosen is the one with
the highest priority (lowest interface metric value).

7 https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
[accessed on 13 June 2024]

8 Brave has been included as it claims to be a privacy-focused browser.

https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
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Edge (from an admin console managing policies to be applied to the browser or
extensions9), and impossible on Safari (options do not exist).

None of the aforementioned studies compared IP address leaks according to
the currently defined WebRTC IP address handling modes. They did not explore
the collection of public IPv4 addresses attached to multiple local interfaces or
investigate the IPv6 case in sufficient depth, including behind an IPv4 or IPv6
VPN tunnel with both IPv4 and IPv6 forwarding capabilities. They also did not
consider the ability to hide behind a SOCKS/HTTP(S) proxy. As a result, we
need a thorough investigation to understand under which setting the IP address
leak occurs.

4 IP address leakage evaluation

4.1 Our test bed architecture

We first set up a system composed of (figure 2):
-a public STUN server and a public TURN server, located on the same machine,
implemented by coturn10. Our STUN/TURN servers do not exploit the DNS
wildcard entry attack described by Roesler [25].
-a web page, which is accessible online or locally, and which is in charge of
executing a call to the WebRTC API to generate ICE offers locally in the calling
web browser11. The list of candidates is generated and displayed locally.
-a web client, executed either natively or within a Docker container. Indeed, to
improve WebRTC privacy, we propose to isolate the web browser in a container
that provides a single interface attaching a private IPv4 address and, additionally
for Linux systems, an IPv6 ULA address12 [9], both of which can be routed to
the Internet via NAT rules. Besides, we consider two versions of the web client,
one that is honest (running with default settings), and another one that is com-
promised for WebRTC. Docker was chosen due to its cross-platform advantage.
The solution has been implemented on Linux, macOS and Windows. The user
runs one script to use the solution.
-a VPN server, a SOCKS and a HTTP/S proxy, which may hide the web client.

One experiment on our test bed consists in having the web client open the
web page. As the client does so, a Wireshark traffic analysis is performed both
on the client and the machine hosting the STUN and TURN servers to monitor
the requests. In fact, when the list of ICE candidates is created, if any of them
are considered redundant, they are removed [13].

In our experiments, the Linux, macOS and Windows clients are connected
via both Wi-Fi and Ethernet. All clients have public IPv4 and IPv6 addresses
9 WebRTC Network Limiter, https://chrome.google.com/webstore/detail/webrtc-net

work-limiter/npeicpdbkakmehahjeeohfdhnlpdklia [accessed on 13 June 2024].
10 Coturn server: https://github.com/coturn/coturn [accessed on 13 June 2024].
11 The JS code we produce is based on Reiter and Marsalek work [22].
12 Docker does not support IPv6 on Mac and Windows: https://docs.docker.com/conf

ig/daemon/ipv6/ [accessed on 14 June 2024]

https://chrome.google.com/webstore/detail/webrtc-network-limiter/npeicpdbkakmehahjeeohfdhnlpdklia
https://chrome.google.com/webstore/detail/webrtc-network-limiter/npeicpdbkakmehahjeeohfdhnlpdklia
https://github.com/coturn/coturn
https://docs.docker.com/config/daemon/ipv6/
https://docs.docker.com/config/daemon/ipv6/
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assigned to their respective interfaces. IPv6 addresses are generated in stable
privacy addressing mode [8]. Surprisingly, this network configuration is not un-
common: the eduroam networks of two university campuses (approximately 1,500
people and 30,000 people respectively) have no NAT.

4.2 Compromised web browser threat model

The adversary is able to exploit any vulnerability in Firefox to force it to oper-
ate in the most unfavourable WebRTC mode, or even to modify the WebRTC
implementation maliciously (e.g. mode 1 always used regardless of the user’s
consent). The adversary’s capabilities are limited to compromise the browser.
The WebRTC client is corrupted and is unaware of it.

Our compromised browser is forced to run only in a mode where WebRTC
does not respect privacy: no mDNS protection, even if the user does not give his
consent, and link-local/loop-back IP addresses can be candidates.

We could imagine other ways of compromising the browser: a post on the
Mozilla Russia forum [3] gives a way of authorising the installation of extensions
not signed by Mozilla. All that needs to be done is to create an executable script
and have the user download it.

For ease of reading, all the tables mentioned in the following three subsections
are grouped together in subsection 4.6.

4.3 Evaluation of current web browsers

Table 1 compares the behaviour of the main web browsers when they visit the
experiment web page and make calls to the API, for each WebRTC IP Address
Handling mode they implement. The default browser configuration corresponds
to a vanilla installation, freshly set up on the computer without any modifica-
tions. In this configuration, the user’s consent results exclusively in a given We-
bRTC IP handling mode. For all the web browsers tested except Safari, mode
2.2 is used without consent, but with consent, mode 1 is used. Regarding Safari,
whatever the user’s consent, mode 2 is used. For the forced configuration case,
we consider all possibilities i.e. whether the user has given consent or not. Safari
does not allow forced mode.

Similarly to previous IETF works [29,30], we observe that for all web browsers,
configured in modes 2.2, 2 or 3, and regardless of the user’s possible consent for
these modes, the STUN and TURN servers know the public IPv4 and IPv6 ad-
dresses from the default route interface with the highest priority. For all three
modes, the list of final ICE candidates that may be sent to the signalling server
and the peer contain: at worst (mode 2), private IP addresses and/or public
IP addresses (from the local interface), public IP addresses (from STUN) and
relayed addresses (address allocated by the TURN server that does not identify
the user), by default (mode 2.2), mDNS addresses that cannot be resolved by
the signalling server and the peer if they are outside the client’s network, public
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IP addresses (from STUN) and relayed addresses, or at best (mode 3), public IP
addresses only (from STUN) and relayed IP addresses.

With user consent, Firefox, Chrome, Edge, Opera, and Brave use mode 1.
The STUN/TURN servers receive requests from interfaces with a route to the
Internet (Wi-Fi and Ethernet). These interfaces attach both a public IPv4 and
a public IPv6 addresses, the STUN and TURN servers therefore know in total
4 IP addresses. Private and public addresses attached to all interfaces are also
discovered. The signalling server therefore has knowledge of private and public
IP addresses, since our client is connected to a network that allocates public
IP addresses. As these public addresses are the same as those coming from the
STUN server, the risk may be limited. However, we colour them in red on Table 1
because the sequel demonstrates these addresses are a problem. Let us highlight
that WebRTC real-time communication involving microphone and/or camera
usage (a frequent phenomenon nowadays) implies using mode 1 by default. Since
the user uses his/her ISP’s connection directly, we colour in light red cells that
reveal sensitive public IP addresses to the STUN/TURN servers, and later to
the signalling server and the peer. Red and light red colour codes are common
to the other tables.

4.4 Evaluation of an honest Firefox browser in various
configurations (VPN - SOCKS - HTTP/S - Docker)

We set up an OpenVPN UDP VPN server, a Wireguard VPN server, a SOCKS
and a HTTP/S proxy on another machine to check for leaks of the user’s public
IPv4 and IPv6 addresses when all the traffic from the host machine goes through
these proxies13. Our solution uses Firefox as it is open source, considered by the
community as one of the most privacy-protecting browsers, and Mozilla has a
transparent policy on its product, development and funding. We have not tested
the solution with other browsers as we consider the solution to be network-
impacting rather than applicative.

The results are given in Table 2. We colour in green the cells whose IP ad-
dresses are those of the VPN server protecting user’s identity, and in light green
the cells for which no ISP IP addresses could be retrieved. These green colour
codes are also common to the Table 3. We notice, alarmingly, that the STUN/-
TURN requests consistently bypass the built-in Firefox SOCKS and HTTP/S
client, both with and without Docker. With the VPN, by default without con-
tainerisation when the user gives consent in use with a VPN, there is a leak
of the public IP addresses of the ISP , private addresses, and those of the
VPN. The future signalling server and peer will therefore be able to know this
information, and the fact that the user is using a VPN. The STUN/TURN server
could also get this information by exploiting the Roesler’s DNS wildcard entry
attack [25] which is not studied here. However, all computer traffic goes through
the VPN (cf. Wireshark data).

13 For SOCKS and HTTP/S proxies, we use the Firefox default built-in client.
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We also obtained neither candidates, nor STUN/TURN requests by forcing
mode 4 for all the configurations evaluated. The Mozilla Wiki indicates that some
parameters are poorly documented or not even implemented [18]. The associated
Wireshark traces are available in the GitHub repository.

Obviously, forcing mode 3 would be an interesting alternative, but doing so
hinders quality of service: the user loses full support of IPv6 in the context of a
WebRTC communication (see orange cells in Table 2).

4.5 Evaluation of a compromised Firefox browser in various
configurations (VPN - SOCKS - HTTP/S - Docker)

The results are given in Table 3. We note that in the compromised version, with
or without user consent, there is no more mDNS protection. However, without
consent, the leaked addresses are those attached to the default route interface.

If all traffic is redirected through a VPN, then we lose quality of service again:
IPv6 is no more possible (orange cells). In mode 1 (user consent), there is a leak
of both VPN and addresses provided by ISP . The signalling server and the
peer are thus aware of this information. STUN/TURN servers also learn it, if
they implement the Roesler attack (DNS wildcard entry) [25], otherwise only
VPN IPs are leaked.

However, the compromised dockerised web client protects users from any leak
of sensitive private IP addresses. If a VPN is also used, they will not reveal any
sensitive private address, nor any public address associated with their ISP. As
in the previous evaluation (section 4.4), STUN/TURN requests bypass the inte-
grated Firefox proxy clients; configuring a SOCKS or HTTP/S proxy in Firefox
settings is ineffective and does not improve the user’s privacy, highlighting a
critical issue. Similarly, the evaluation in mode 4 does not appear in either of
the tables because we did not obtain candidates or STUN/TURN requests for
any of the configurations assessed [18].

4.6 Results of the WebRTC leaks evaluation

Our results are summarised in Tables 1, 2, and 3. More precisely, Table 1 consid-
ers WebRTC various IP handling modes, Table 2 reviews native and container-
ised architectures, while Table 3 considers a compromised web browser.

Software information. The various software and versions used in our experiments
are available in the Anonymous GitHub repository.

Tables notations. The notation in Tables 1, 2, and 3 are as follows. "X" means
that one (or more) client’s address(es) was retrieved (depending on the WebRTC IP
handling mode). "." means that no address was retrieved. The means used to observe
the host addresses retrieved and the addresses discovered by the STUN/TURN servers
are in the "Obs." column for Observation. No crosses in Tables 1, 2, and 3 correspond
to TURN relayed addresses as they do not identify the client. VPN local, Doc. priv.,
Doc. ULA, VPN mean VPN private IP address, Docker private IPv4 address, Docker
ULA IPv6 address, VPN’s public IP address, respectively. MF means Mozilla Firefox,
lo means loopback IP address(es), and ll means private link-local address(es).
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Table 1. Comparison of leaked IP addresses’ types by the main web browsers for
different WebRTC IP handling modes.

Browser Mozilla Firefox Chrome - Edge
Opera - Brave Safari

Configuration Default Forced Default Forced Default
User consent Yes No Yes Nob Both Yes No Both Both Both

Mode 1 2.2 2 2→ 2.2 3 1 2.2 2 3 2

Observation Retrieved address(es)
Source Type

SDP offers Locala

mDNS . X . X . . X . . .
Priv. IPv4 Xc . Xe . . Xc . Xe . Xe

Priv. IPv6 Xd . Xd . . Xd . Xd . Xf

Pub. IPv4 X . Xe . . X . Xe . Xe

Pub. IPv6 X . X . . X . X . X

Wireshark
STUN Pub. IPv4 X X X X X X X X X X

Pub. IPv6 X X X X X X X X X X

TURN Pub. IPv4 X X X X X X X X X X
Pub. IPv6 X X X X X X X X X X

Table 2. Comparison of leaked addresses’ types by a vanilla Firefox for different
WebRTC IP handling modes and configurations. Docker only supports IPv6 on Linux.

Browser MF only MF +
SOCKS/HTTP(S)

MF
+ VPNs

MF dockerised
MF dockerised +
SOCKS/HTTP(S)

MF
dockerised + VPNs

Configuration Default Forced Default Forced Default Forced Default Forced
User consent Yes No Yes Nob Both Yes No Yes Nob Both Yes No Yes Nob Both Yes No Yes Nob Both

Mode 1 2.2 2 2.2 3 1 2.2 2 2.2 3 1 2.2 2 2.2 3 1 2.2 2 2.2 3

Obs. Retrieved addr.
Source Type

SDP
offers Locala

mDNS . X . X . . X . X . . X . X . . X . X .

Priv. IPv4 Xc . Xe . . Xc . VPN
local . . Doc.

priv. . Doc.
priv. . . Doc.

priv. . Doc.
priv. . .

Priv. IPv6 Xd . Xd . . Xd . .h . . Doc.
ULA . Doc.

ULA . . Doc.
ULA . Doc.

ULA . .

Pub. IPv4 X . Xe . . X . . . . . . . . . . . . . .
Pub. IPv6 X . X . . X . . . . . . . . . . . . . .

Wire
shark

STUN Pub. IPv4 X X X X X VPN VPN VPN VPN VPN X X X X X VPN VPN VPN VPN VPN
Pub. IPv6 X X X X X .g .h .h .h .h X X X X X VPN VPN VPN VPN VPN

TURN Pub. IPv4 X X X X X VPN VPN VPN VPN VPN X X X X X VPN VPN VPN VPN VPN
Pub. IPv6 X X X X X .g .h .h .h .h X X X X X VPN VPN VPN VPN VPN

Tables footnotes. The footnotes referenced in Tables 1, 2, and 3 are as follows:
a For IP addresses, it is subject to have these addresses’ types associated with the local
interface(s) used according to the different modes (RFC 8828 [29]).
b Even when forcing the use mode 2 on Firefox, the real mode is 2.2 without user
consent (mDNS protection of the preferred interface’s local addresses).
c Firefox filters local IPv4 addresses associated with all interfaces and skips link-local
and loop-back addresses [17]. Chromium-based browsers: [28].
d A filtering of IPv6 addresses associated with the interface(s) chosen is done. One or
more IPv6 addr. preferred by this filtering will be chosen [17,28].
e It is either a public or a private IPv4, as mode 2 selects the default route interface
and as an interface can only get one IPv4.
f Our observation shows that if the default interface does not have a public IPv6 addr.
but only a ULA IPv6 addr. (routable to the internet via a NAT), it will be included
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Table 3. Comparison of leaked addresses’ types by a compromised MF for different
WebRTC IP handling modes and configurations. Docker only supports IPv6 on Linux.

Browser
compr. MF

compr. MF +
SOCKS/HTTP(S)

compr.
MF + VPNs

compr. MF dockerised &
compr. MF dockerised +

SOCKS-HTTP(S)

compromised MF
dockerised + VPNs

Configuration Forced Forced Forced Forced
User consent Yes No Yes No Yes No Yes No

Mode 1 2 1 2 1 2 1 2

Obs. Retrieved addr.
Source Type

SDP
Offers Locala

mDNS . . . . . . . .
Priv. IPv4 Xc Xe Xc VPN local Doc. priv. + lo Doc. priv. Doc. priv. + lo Doc. priv.

Priv. IPv6 Xd Xd Xd .g Doc. ULA +
lo + ll Doc. ULA Doc. ULA +

lo + ll Doc. ULA

Pub. IPv4 X Xe X . . . . .
Pub. IPv6 X X X . . . . .

Wire
Shark

STUN Pub. IPv4 X X VPN VPN X X VPN VPN
Pub. IPv6 X X .g .h X X VPN VPN

TURN Pub. IPv4 X X VPN VPN X X VPN VPN
Pub. IPv6 X X .g .h X X VPN VPN

in an ICE candidate (tested with OpenVPN UDP assigning a local ULA addr.). It is
very like having a filter similar to the one in Firefox/Chromium.
g See d; In our tests, Wi-Fi and Ethernet interfaces attach temporary routable public
IPv6 addresses. Thus, the VPN local ULA address is eliminated. There are indeed
attempts to connect to the TURN and STUN servers via the public addresses (seen on
Wireshark) but blocked by the VPN.
h See d; It seems that filtering is done on all interfaces before selecting the default
interface used in modes 2, 2.2 and 3 (here VPN one). As there is at least one public
IPv6 address, the VPN ULA is removed. Firefox then appears to select only remaining
IPv4 addresses associated with the VPN interface (since the ULA has been removed).
Consequently, no private IPv6 ULA address, routable via the VPN NAT, is present in
the ICE candidate list, which prevents any requests to the STUN/TURN servers.

5 Performance impact evaluation

We evaluate our containerised Firefox web browser in terms of performance
with respect to its native, non-containerised version. We use three open-source
benchmarks14 suites actively developed and used by the three main web browser
engine developers, Apple, Mozilla and Google: JetStream2 v2.2 (a JavaScrip-
t/WebAssembly benchmark suite); MotionMark v1.3 (a graphics benchmark);
Speedometer v3.0 (a web application responsiveness benchmark). Each bench-
mark suite is run twenty times in 18 different configurations described in figure 3.
For each configuration we calculate the arithmetic mean of the scores obtained
from each benchmark and its 95% confidence interval (figure 3).

We can therefore compare the impact of our containerised solution on perfor-
mance by calculating the ratio of the mean scores of the Firefox native version
to the mean scores of the containerised version for the three benchmarks (fig-
ure 4). We note that with Linux, the speed differences with the JetStream2 and

14 Hosted by Apple at: https://browserbench.org/ [accessed on 13 June 2024].

https://browserbench.org/
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Meaning of groups of 3 and 4 letters representing the configurations tested on the x axis.

1st letter: Linux (L), macOS (M) or Windows (W) host OS
2nd letter: Native (N) or Dockerised (D) execution of Firefox
3rd letter: Vanilla (V) or Compromised (C) version of Firefox
4th letter: X (X) or Wayland (W); N/A on macOS and Windows Native execution of Firefox

Fig. 3. Mean scores for the 3 benchmarks for each configuration tested (higher is better)

Speedometer benchmarks are minimal, and in some cases, the native version is
slightly slower than the containerised version. This is due to containers being sim-
ply namespaces dedicated to the process running inside them [7]. On Windows,
the native Firefox browser is respectively around 17%, 168% and 40% faster than
the Wayland containerised solution on JetStream2, MotionMark, Speedometer,
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Fig. 4. Ratios of the 3 benchmarks mean scores for Firefox running natively compared
with those for Firefox running in a container (lower is better)

and 17%, 342% and 45% faster than the X containerised solution. On macOS,
the native Firefox browser is respectively around 21%, 258% and 75% faster than
the containerised solution on JetStream2, MotionMark and Speedometer. The
performance differences on macOS and Windows are attributable to the use of a
virtual machine to run Docker and, in particular for the MontionMark graphics
benchmark, the inability of the containerised Firefox to access the host GPU.

– Ubuntu 22.04 and Windows 11 Pro 23H2 with a Dell Latitude 5520 (2022),
Intel Core i5-1145G7 @ 2.60 GHz, 16 GB RAM

– macOS Sonoma 14.5 with a MacBook Pro 13-inch (2022), M2, 16 GB RAM

6 Conclusion

We analysed the IP address leaks resulting from the use of the WebRTC API
in various situations and concluded that none of the most popular web browsers
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ensure sufficient privacy on this matter. Critically, we first observe that config-
uring a SOCKS or HTTP/S proxy in Firefox settings is ineffective and provides
absolutely no protection to the user. We also note that large non-NAT corporate
networks exist and are not rare situations as shown by the eduroam networks
of the two university campuses. This situation leads to a leak of public IP ad-
dresses even when hidden behind a VPN. Despite not studying the case of a
compromised browser, RFC 8828 [29] and its complementary draft [30] shows
promise in describing different operation modes. However, using the getUser-
Media method to make WebRTC more privacy-friendly is not reasonable. User
consent definition should be reviewed, and users should be informed of how con-
sent is given. Forcing mode 3 is difficult on Chrome and Edge, making it hard
to protect against IP address leaks. Last, without the work of Fakis et. al [6], it
is impossible to natively block STUN/TURN requests.

To address these problems, we proposed a simple container-based solution to
enable WebRTC usage without compromising privacy in various settings. Our
Firefox isolation in a Docker container provides only one network interface and
safeguarding the users from IP address leaks and compromises during video/au-
dio communication (mode 1). It leaks less sensitive information: only the private
IP addresses of the unique network interface provided by the container, and the
public IP addresses provided by its ISP (prefix for IPv6). By hiding behind a
VPN, no sensitive information leaks to third-party STUN/TURN servers, sig-
nalling and the other peer. Our solution is user-friendly, requiring no extensions
or IPv6 disabling at the host level. The performance impact of our containerised
solution compared with running Firefox is zero on Ubuntu, and low on other
OSes except for the graphics benchmark, with a peak on macOS and Windows.

Future research could focus on improving this aspect on these two systems.
Additionally, conducting experiments in more diverse environments, including
various network configurations, would enhance assessment of the stability and
effectiveness of the solution under real-world conditions. Extending this approach
to containerise other web browsers and evaluating its effectiveness could broaden
the solution’s applicability. There should also be potential for developing a more
user-friendly deployment method for the Docker-based solution possibly through
a graphical user interface (GUI) for non-technical users. Lastly, creating a more
comprehensive guidance for implementing the containerised solution and inte-
grating it with existing privacy tools, such as VPNs or anonymity networks
would further improve its usability.
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